Exercise 329

For the following problems, determine the largest domain on which the function is one-to-one and find the inverse on that domain.

$$
f(x)=x^{2}+3 x+4
$$

Solution

$f(x)$ is a quadratic function, so the graph is of a parabola. To graph it exactly, complete the square.

$$
\begin{aligned}
f(x) & =\left(x^{2}+3 x+\frac{9}{4}\right)-\frac{9}{4}+4 \\
& =\left(x+\frac{3}{2}\right)^{2}+\frac{7}{4}
\end{aligned}
$$

This parabola is shifted upward by $7 / 4$ units and shifted to the left by $3 / 2$ units as shown below.

It fails the horizontal line test, so it's not one-to-one and therefore does not have an inverse.

However, by taking the restriction of $f(x)$ to $x \geq-3 / 2$, it passes the horizontal line test and does have an inverse.

Replace x with y, and replace $f(x)$ with x in the equation.

$$
x=y^{2}+3 y+4
$$

Solve for y.

$$
\begin{gathered}
y^{2}+3 y+(4-x)=0 \\
y=\frac{-3 \pm \sqrt{9-4(4-x)}}{2}
\end{gathered}
$$

We choose the plus sign because the inverse function has to be the mirror image of the function over the line $y=x$.

$$
y=\frac{-3+\sqrt{9-4(4-x)}}{2}
$$

Simplify the right side.

$$
y=\frac{-3+\sqrt{4 x-7}}{2}
$$

$f(x)$ and $f^{-1}(x)$ are shown in the graph below.

